• Imagine a mass is to be moved linearly in a certain direction.

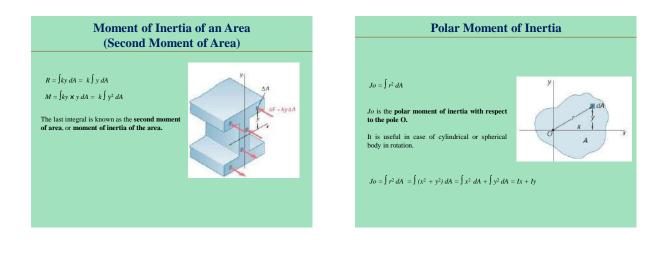
- According to Newton's 1st and 2nd Law of Motion (*F = ma*),
 1. A force must be added to change its speed or to create a linear acceleration.
 - 2. Greater the mass of the body, greater the force is needed to create same linear acceleration.

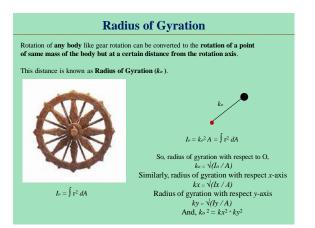
What if we want to move a body <u>angularly</u> instead of <u>linearly</u>???

Does <u>mass</u> the only culprit to hinder the rotation of a body???

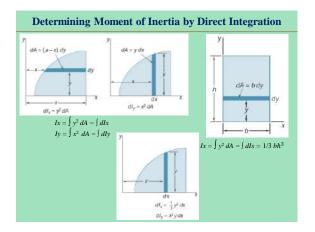
Let us suppose a ball/ hammer throwing game.

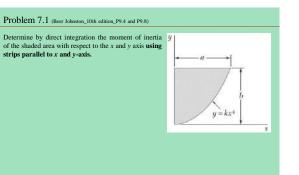
Not only mass here is responsible to resist the rotational motion of a body, but also distance of the body from the rotation axis is involved here.


Nik Wallenda crossing Niagara Falls over a tightrope in 2012 and became the first to walk on a rope over Niagara Falls.


He used a long rod to balance himself and distribute the total weight over a wide distance thus **increasing moment of inertia that is resistance of rotation.**

ME 141 Engineering Mechanics


Portion 7 Inertia


Partha Kumar Das Lecturer Department of Mechanical Engineering, BUET http://parthakdas.buet.ac.bd

PARALLEL-AXIS THEOREM

1

B

dA

ĉ

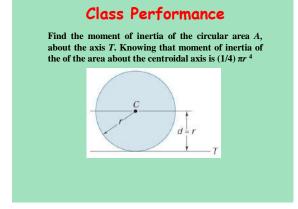
R

A

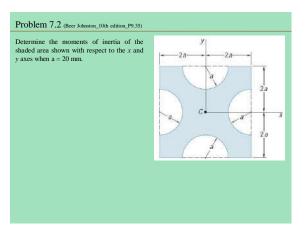
Consider the moment of inertia I of an area A with respect to an axis AA' .

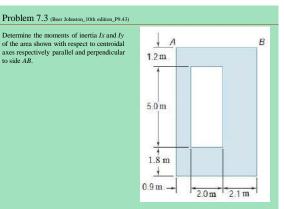
 $I = \int y^2 dA$ Let us now draw a centroidal axis BB' through the centroid C of the area parallel to AA'.

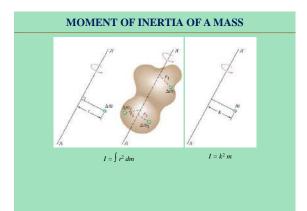
 $I = \int y^2 dA = \int (y'+d)^2 dA$ = $\int y'^2 dA + 2d \int y' dA + d^2 \int dA$


The first integral represents the moment of inertia *I* of the area with respect to the centroidal axis BB'. The second integral represents the first moment of the area with respect to BB'; since the centroid C of the area is located on that axis, the second integral must be zero. Therefore,

Δ.


Also for radius of gyration,


 $I = \overline{I} + A d^2$ $k^2 = \overline{k^2} + d^2$


Also for radius of gyration, $k^2 = \overline{k}^2 + d^2$ >For more detail see Vector Mechanics for Engineers: Statics and Dynamics- Ferdinand Beer, Jr., E. Russell Johnstor David Mazurek, Phillip Cornwell.

Rectange		$\begin{split} \overline{l}_{0} &= \frac{1}{11} (2t)^{2} \\ \overline{l}_{0} &= \frac{1}{11} (2t)^{2} \\ \overline{l}_{0} &= \frac{1}{11} (2t)^{2} \\ \overline{l}_{0} &= \frac{1}{12} (2t)^$	For measuring the moment of inertia of composite areas, it may be needed to transfer the moment of inertia about desired axis using parallel axis theorem and then arithmetically added them all.
Triangle		$\begin{split} \tilde{I}_{a} = & \frac{1}{31} D t^{2} \\ \tilde{I}_{a} = & \frac{1}{12} D t^{2} \end{split}$	
cicae	· .	i_{e} - T_{μ} - $\frac{1}{2}$ σt^{4} i_{e} - T_{μ} - $\frac{1}{2}$ σt^{4}	Out in circle $\frac{1}{2}$
Semicinde	1	$l_p = l_p - \frac{1}{2} x t^4$	

End of Portion 7

References

➤Vector Mechanics for Engineers: Statics and Dynamics Ferdinand Beer, Jr., E. Russell Johnston, David Mazurek, Phillip Cornwell.